WIND MANIA

The wind mania and its climatic consequences

Manfred Brugger

AGENDA

About me and the book Introduction Climate Water vapor and the water cycle Wind energy Wind energy and climate Summary

Growian

Location:

Hub height: 100 m

Rotor diameter: 100 m

El. Rated power: approx. 3 MW

Commissioning: 1983

Shutdown: 1987

Dismantling:

I thought wind energy was great and a very good idea!

1988

Kaiser-Wilhelm-Koog

The change....

"**Before we're left high and dry**" was the title of a 2020 report in the Paderborn water works

Precipitation 2011- 2021 Deutscher Wetterdinent - Station Bad Lippspring													ABOUT ME
1000.0 10	1900.0									Long-te Deficit Precipit	rm averag	•	
1200.0 1000.0													
1000,0 1000,0	1400,0												
800,0 600,0 200,00	1200,0												
600,0 200,0 201,00	1000,0			_					-				
400,0 200,0 9 0 1000-1000 2011 2012 2013 2014 2015 2019 2017 2018 2019 2019 2020 2021 5um of													
200.0 8.3 Long-term 2011 2012 2013 2014 2015 2019 2017 2018 2017 2018 2019 2020 2021 5um of													
0,0 Long-term 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Sum of													
Long-term 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Sum of average	0.0												
	Long	-term 2011 rage	2012	2013 2014	2015	2016	2017	2018	2019	2020	2021	Sum of deficits	

At approx. 825 kW/km², the Paderborn district has the **third highest** density of wind turbines in Germany...

Long-term average Deficit **Deutscher Wetterdienst - Station Bad Lippspringe** Precipitation 1800,0 1600,0 1400,0 1200,0 1000,0 800,0 600,0 400,0 200,0 0,0 Long-term 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Sum of deficits average

Precipitation 2011-2021

ABOUT ME

The first paper

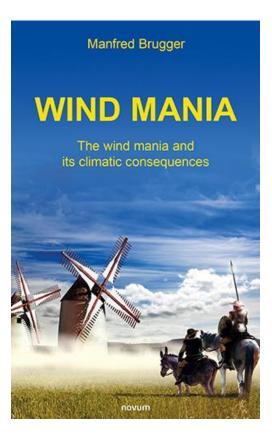
l produced and published my first paper "<mark>Windwahn</mark> <mark>- Der Windwahn und seine klimatischen</mark> <mark>Konsequenzen</mark>" in March 2022.

The book

The book is divided into 5 chapters with 24 points.

Chapter 1: The Earth's atmosphere

Chapter 2: Earth, sun and moon system


Chapter 3: Humanity and energy

Chapter 4: Wind and weather

Chapter 5: Sun instead of fossil

147 references invite you to browse.

https://buch.manfred-brugger.de

ABOUT ME

Website

Funding projects

PORSC-MAGINERICHT

zrausgegeben von der Fachagentur Windenergie 🥿

Der Kampf gegen Windmühlen

Erzählungen und Argumentationsstrategien von Windenergiegegnern und gegnerinnen auf Twitter und Facebook im April und Mai 2021


Der Kampf gegen Windmühlen

Erzählungen und Argumentationsstrategien von Windenergiegegnern und -gegnerinnen auf Twitter und Facebook im April und Mai 2021

Stefan Schweiger, Jenny Zorn, Julia Janik, Matthias Wolf (Ruhr-Universität-Bochum) bearbeitet von Iwona Kallok (FA Wind)

Herausgegeben von der Fachagentur Windenergie an Land e.V.

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages Gefördert durch:

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz

aufgrund eines Beschlusses des Deutschen Bundestages

Source: https://www.fachagentur-windenergie.de/

Funding projects

zrausgegeben von der Fachagentur Windenergie 🥿

FACHAGENTUR WINDENERGIE AN LAND

ARGUMENTATIONS LEITFADEN

Falsche Argumente erkennen.

Oder: Wie diskutiere ich mit Windenergiegegnern?

Windenergiekritiker sind eine kleine Gruppe, aber oft lautstark – in Veranstaltungen genauso wie auf Social Media. Ihre Beiträge haben Publikum, manchmal kapern sie eine ganze Diskussion. Deshalb ist es wichtig, argumentativ nicht haltbaren Meinungen zu widersprechen oder auf Fehler hinzuweisen. Dann können auch erfolgreiche Debatten geführt werden, wenn das Gegenüber nicht einlenkt.

In diesem Leitfaden werden häufig auftauchende Fehlschlüsse in der Argumentation verschlagwortet sowie Beispiele und mögliche Gegenstrategien aufgelistet. Diese eignen sich nicht nur für die Diskussion um Windenergie, sondern helfen auch in anderen Debatten. Alle Ideen sowie die auf Originalzitaten basierenden Beispiele stammen aus dem Forschungsbericht "Der Kampf gegen Windmühlen".

Gefördert durch:

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz

aufgrund eines Beschlusses des Deutschen Bundestages

Source: https://www.fachagentur-windenergie.de/

To the madness

I know it borders on **madness** to fight against the mainstream, the common **narratives**, but above all against **money** and thus the **power of the factual**.

But I am not indifferent to where society and our state are heading.

No one will ever be able to hold anything against me or ask me, what did you do about it?

The book was and is my duty.

+ •

The last 20 years

Introduction

"We must always repeat what is true, because error is always being preached around us, not by individuals, but by the masses. In newspapers and encyclopaedias, in schools and universities, error is everywhere at the top, and it is comfortable and at ease in the feeling of the majority that is on its side."

Source: Goethe, J. W., Conversations. With Peter Eckermann, December 16, 1828

According to the Soil Atlas 2015, around 77 hectares (equivalent to the area of around 100 soccer pitches) lose their natural function **every day** in Germany due to conversion. Today, these figures have probably already increased significantly. Worldwide, **24 billion tons of soil are** lost every year.

Global forest areas (approx. 31% of the Earth's land area) have shrunk by around **100 million hectares.**

Decrease of approx. 2.5 %.

Image source: Zeit

The **CO**₂ content in the atmosphere rose from around **370 ppm to 410 ppm**:

(Increase:

1960 approx. **1.3** ppm/a

1990 approx. 2.9 ppm/a

2021 approx. 4.5 ppm/a)

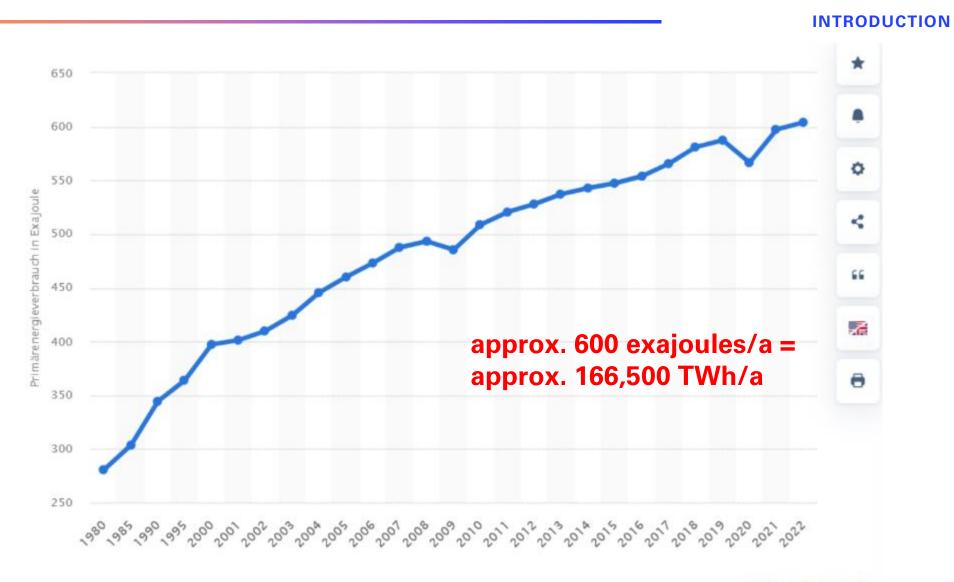
Increase of around 11 %.

Image source: University of Tübingen

The world's population has increased from 6 to 8 billion people:

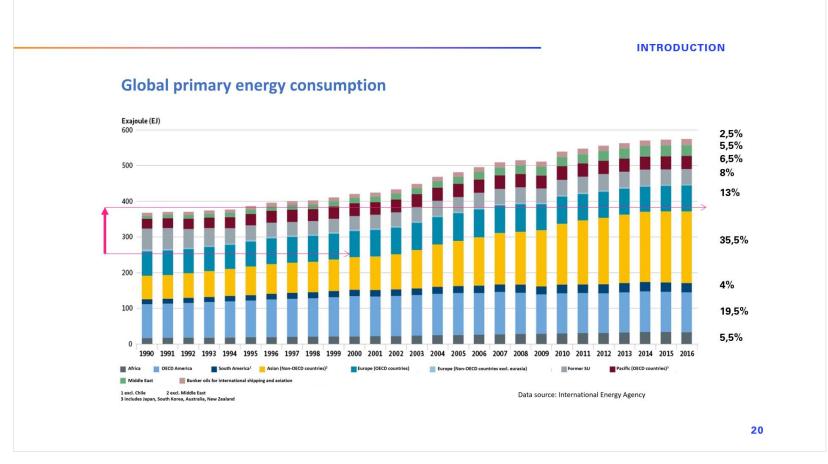
Increase of around 33 %.

Image source: Tagesschau

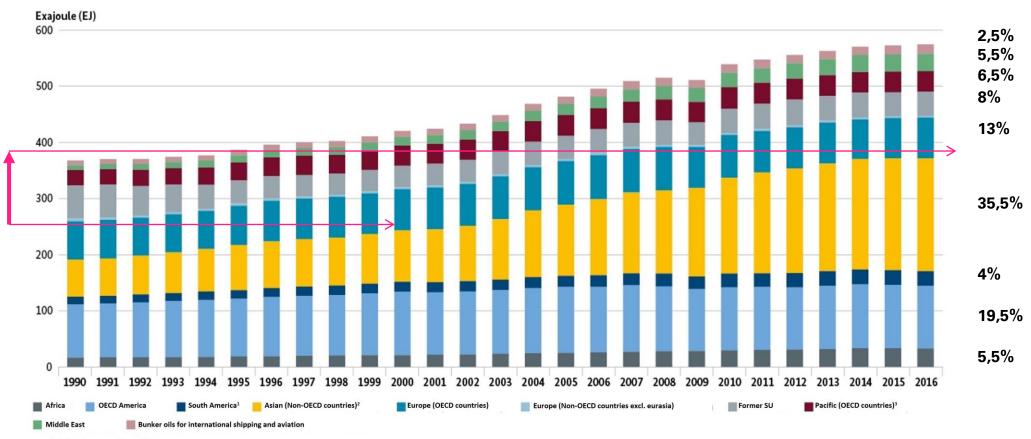


Total **annual primary energy consumption** has **increased** from around **400** to **600 exajoules** (84.3 % fossil, German share 1.5 %), almost exclusively in Asia:

Around 50 % increase.


Image source: BMWI

Source: https://www.statista.de/


© Statista 2024 🖻

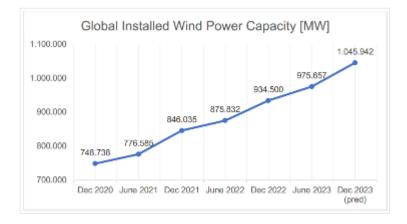
Primary energy consumption

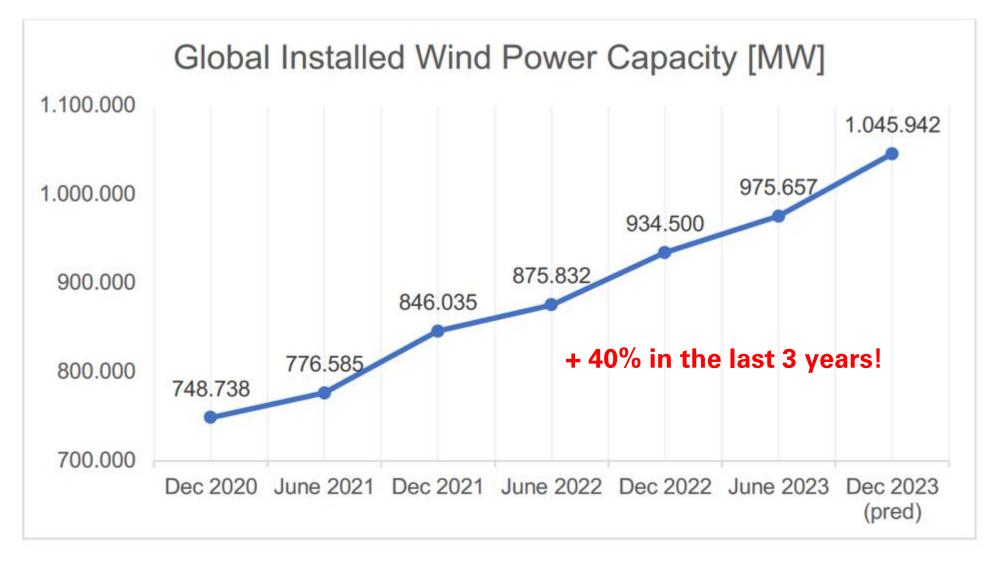
Source: International Energy Agency

Global primary energy consumption

¹ excl. Chile 2 excl. Middle East 3 includes Japan, South Korea, Australia, New Zealand

Data source: International Energy Agency


Global installed **wind energy capacity** has increased from approx. **17.4 GW to 1,046 GW** (as at the end of 2023), which corresponds to a factor of around 60:


Increase of around 6,000 %.

Wind power output is set to increase by a further **50** % by **2026.** This corresponds to a factor of 75.

Increase of around 7,500 %/

Image source: World Wind Energy Association

CLIMATE

+

0

+

0

Change, transformation or simply ignorance?

CLIMATE

Weather and climate

We use the term **weather to** describe the current thermodynamic state of the troposphere in a particular area.

Climate is the average of the thermodynamic processes (weather) in the atmosphere over a period of at least **30 years**, determined using meteorological methods.

And now comes the big question: climate change?

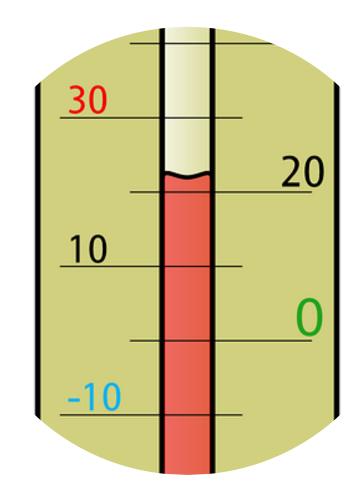
Climate change????

And the answer is: **YES**, the climate has definitely

changed, but whether it has changed, we don't yet know for sure - nor why!

The climate codex that so-called climate journalists have imposed on themselves does nothing to change this.

> Climate change -> Climate crisis Global warming -> global heating Climate skeptics -> Climate deniers

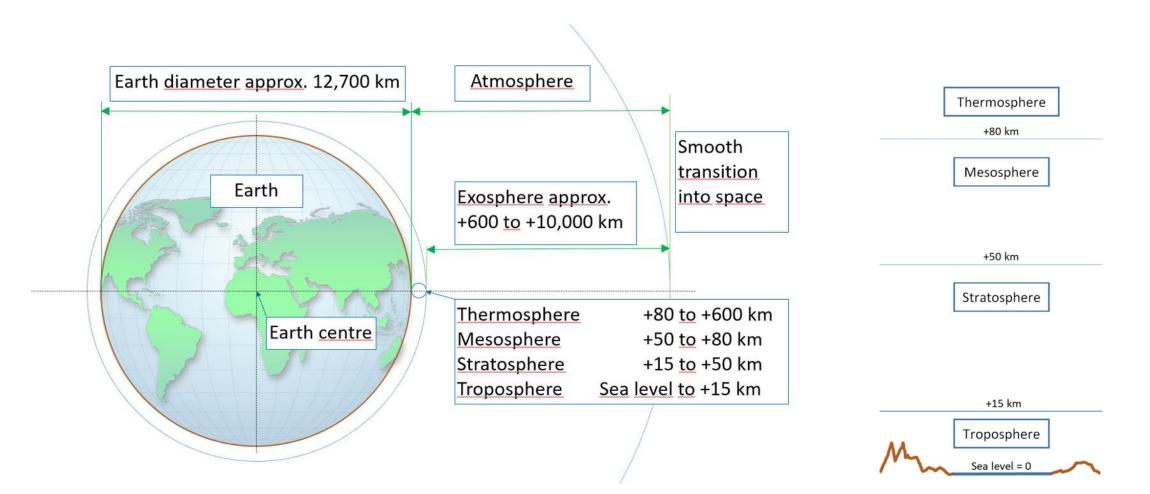

Temperature

Temperature describes the energetic heat state of a substance in °C or K.

Heat describes the **kinetic energy of** the atomics and molecules forming the substance. The higher the temperature, the faster the particles vibrate.

As a result, all substances with temperatures above absolute zero emit thermal radiation.

Expansion, change of aggregate state, increase in pressure

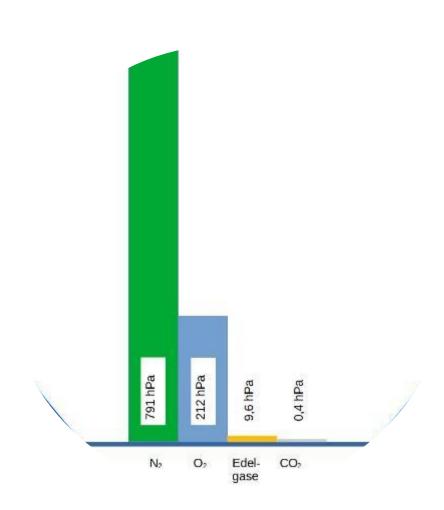

The atmosphere

A distinction is made between 5 layers:

- Troposphere -> Tropopause
- Stratosphere -> Stratopause
- Mesosphere -> Mesopause
- Thermosphere -> Thermopause
- Exosphere -> *Space*

Image source: Studyflix

Air pressure


78 % nitrogen

21 % oxygen

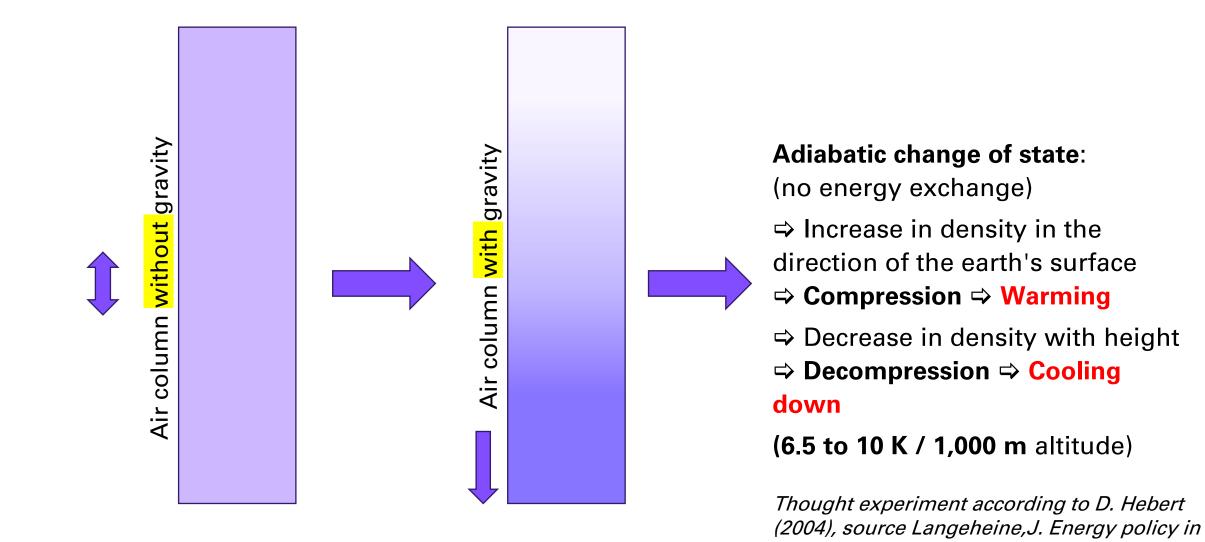
1 % noble gases (argon)

and trace gases, of which 0.04 % CO₂ (400 ppm)

plus water vapor, 3 g/m³ up to 30 g/m³ (3,000 to 30,000 ppm)

The atmosphere

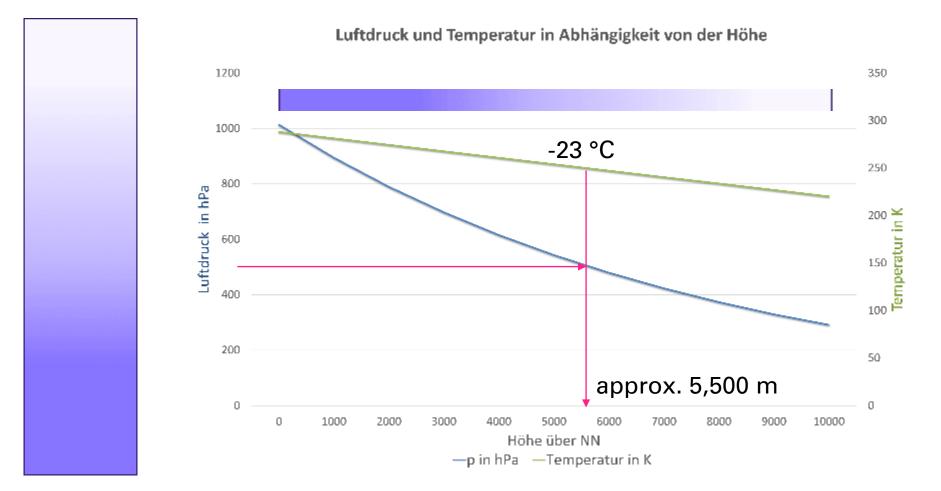
... is an envelope of air that is open at the top and gets thinner and thinner. It is bound to the earth by gravity.


The atmosphere is therefore not a greenhouse either!

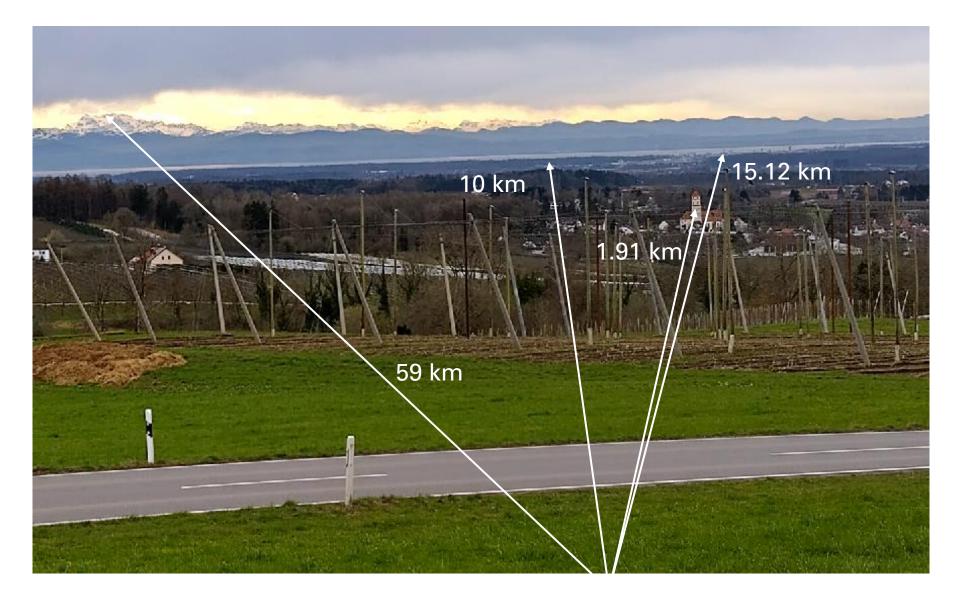
The surface temperature of the earth measured from the outside is 255 K (-18°C).

However, it is actually 288 K (+15 °C) on average.

What is the reason for this?



Germany


31

Air pressure and temperature

p0	101325									Temperatur in K
Rho0		kg/m³		p(h) = p0 *	e ^{-(p0*g*h)/} i					
g	9,81	m/s²				S	toffmengenant	eile in kg/m ^s		
Т₀	288 K					N2	O2	CO2	Sonstige	
				Abnahme						
h in m	p(h) in Pa	exp	p(h) in bar	Druck		78,00%	20,80%	0,04%	1,16%	
(101325		1,013			1,006200	0,268320	0,000516	0,014964	28
1	101312	0,9999	1,013	0,0%	0,000125	1,006074	0,268286	0,000516	0,014962	288
100	100067	0,9876	1,001	1,2%	0,012412	0,993711	0,264990	0,000510	0,014778	287
1000	89428	0,8826	0,894	11,7%	0,117410	0,888062	0,236817	0,000455	0,013207	281
1500	84015	0,8292	0,840	17,1%	0,170839	0,834302	0,222480	0,000428	0,012408	277
2000	78929	0,7790	0,789	22,1%	0,221034	0,783795	0,209012	0,000402	0,011656	274
2500	74151	0,7318	0,742	26,8%	0,268191	0,736346	0,196359	0,000378	0,010951	271
3000	69662	0,6875	0,697	31,2%	0,312492	0,691770	0,184472	0,000355	0,010288	267
3500	65445	0,6459	0,654	35,4%	0,354112	0,649892	0,173305	0,000333	0,009665	264
4000	61483	0,6068	0,615	39,3%	0,393212	0,610550	0,162813	0,000313	0,009080	260
4500	57761	0,5701	0,578	43,0%	0,429946	0,573589	0,152957	0,000294	0,008530	257
5000	54264	0,5355	0,543	46.4%	0,464455	0,538865	0,143697	0,000276	0,008014	254
5500	50979	0,5031	0,510	49,7%	0,496876	0,506244	0,134998	0,000260	0,007529	250
6000	47893	0,4727	0,479	5Z,7%	0,527333	0,475597	0,126826	0,000244	0,007073	247
7000	42270	0,4172	0,423	58,3%	0,582829	0,419757	0,111935	0,000215	0,006243	240
8000	37307	0,3682	0,373	63,2%	0,631809	0,370474	0,098793	0,000190	0,005510	233
9000	32927	0,3250	0,329	67,5%	0,675038	0,326977	0,087194	0,000168	0,004863	226
10000	29061	0,2868	0,291	71,3%	0,713192	0,288586	0,076956	0,000148	0,004292	220
11000	25649	0,2531	0,256	74,7%	0,746866	0,254704	0,067921	0,000131	0,003788	
12000	22637	0,2234	0,226	77,7%	0,776586	0,224799	0,059946	0,000115	0,003343	
13000	19980	0,1972	0,200	80,3%	0,802817	0,198405	0,052908	0,000102	0,002951	
14000	17634	0,1740	0.176	92,0%	0,825968	0,175111	0,046696	0,000090	0,002604	
15000	15563	0,1536	0,156	84,6%	0,846401	0,154551	0,041214	0,000079	0,002298	
16000	13736	0,1356	0,137	86,4%	0,864435	0,136405	0,036375	0,000070	0,002029	
1700	12123	0,1196	0,121	88,0%	0,880352	0,120390	0,032104	0,000062	0,001790	
18000	10700	0,1056	0,107	89,4%	0,894400	0,106255	0,028335	0,000054	0,001580	
19000	9444	0.0932	0.094	30,7%	0,906798	0,093780	0,025008	0,000048	0,001395	
20000	8335	0,0823	0,083	91,8%	0,917741	0,082769	0,022072	0,000042	0,001231	
25000	4464	0,0441	0,045	95,6%	0,955947	0,044326	0,011820	0,000023	0,000659	
30000	2391	0,0236	0,024	97,6%	0,976407	0,023739	0,006330	0,000012	0,000353	
40000	686	0,0068	0,007	99,3%	0,993233	0,006808	0,001816	0,000003	0,000101	
50000	197	0,0019	0,002	99,8%	0,998059	0,001953	0,000521	0,000001	0,000029	
80000				100,0%	0,999954	0,000046	0,000012	0,000000	0,000001	

5000	00002	0,0075	0,007	J 1,2 70	
3500	65445	0,6459	0,654	35,4%	
4000	61483	0,6068	0,615	39,3%	
4500	57761	0,5701	0,578	43,0%	
5000	54264	0,5355	0,543	46.4%	
5500	50979	0,5031	0,510	49,7%	>
6000	47893	0,4727	0,479	52,1%	
7000	42270	0,4172	0,423	58,3%	
8000	37307	0,3682	0,373	63,2%	
9000	32927	0,3250	0,329	67,5%	
10000	29061	0,2868	0,291	71,3%	
11000	25649	0,2531	0,256	74,7%	
12000	22637	0,2234	0,226	77,7%	
13000	19980	0,1972	0,200	80,3%	
14000	17634	0,1740	0.176	92,0%	
15000	15563	0,1536	0,156	84,6%	
16000	13736	0,1356	0,137	86,4%	

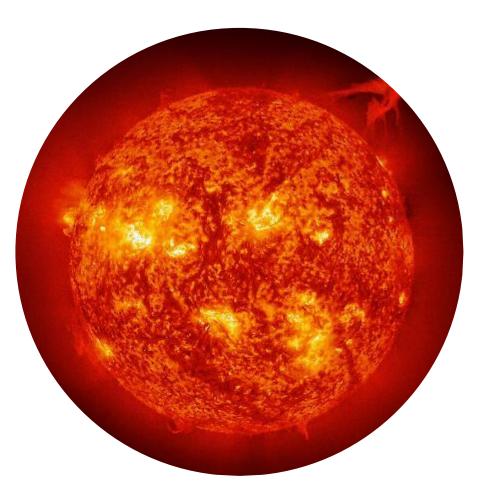
* WATER VAPOR AND * * THE WATER CYCLE *

The sun

Surface temperature: 5,800 K

Radiant power: 63,000 kW/m²

Solar constant at the outer edge of the earth's atmosphere: 1,365 W/m²


Energy input to the earth:

Primary energy consumption:

438 EJ/h mption: approx. 600 EJ/a

3.835 million EJ/a

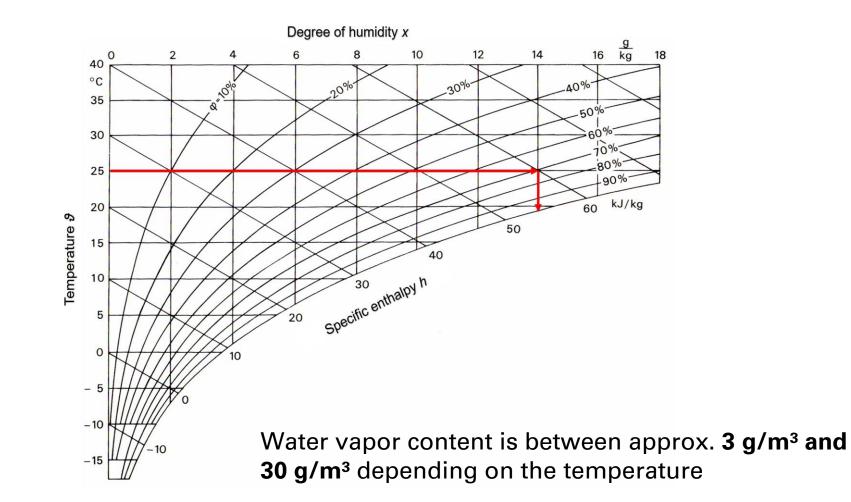
Image source: https://phys.org/news/2022-07-exploring-mystery-magnetic-helicity-solar.html

Heat capacity

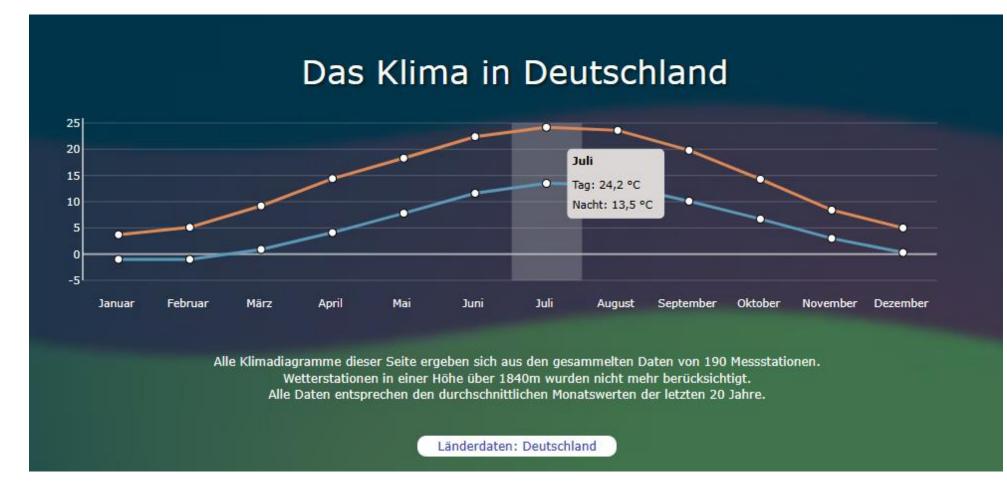
Air:

1.01 kJ/kg*K

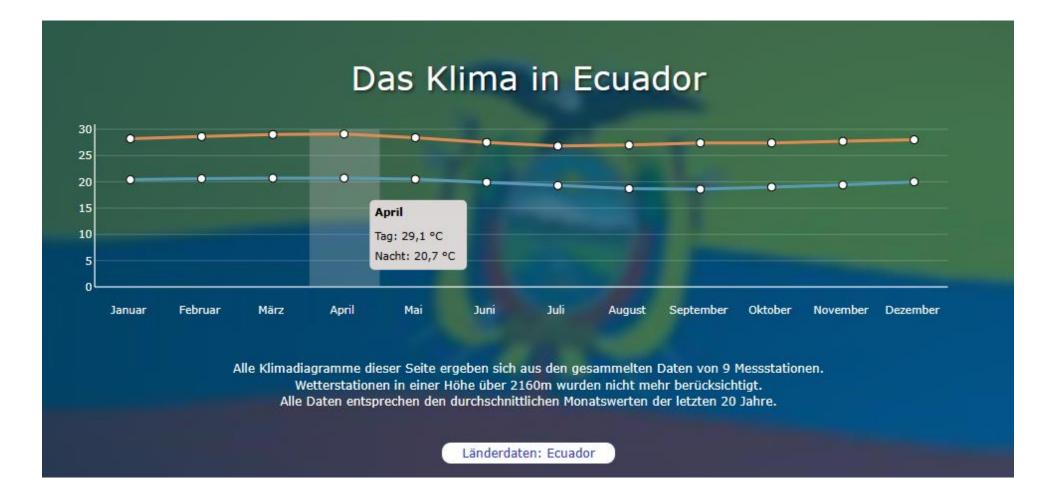
Water:


4.20 kJ/kg*K

Heat of evaporation: 2,460 kJ/kg (water at 15°C)


Image source: By Regionalplaner - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=27966176

Rel. humidity



Germany

https://www.laenderdaten.info

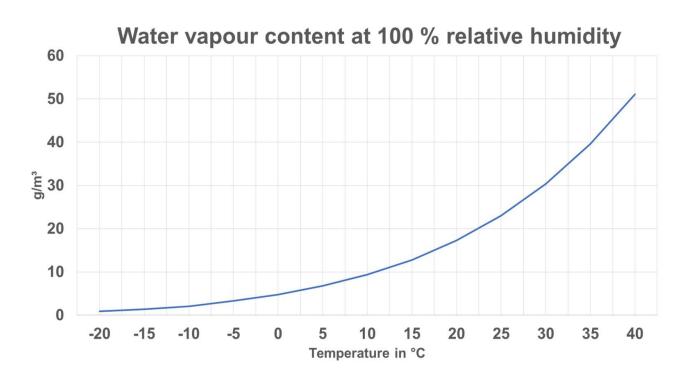
Ecuador

https://www.laenderdaten.info

Latent heat

The amount of water stored in the atmosphere is approx. **13,000 km**³!

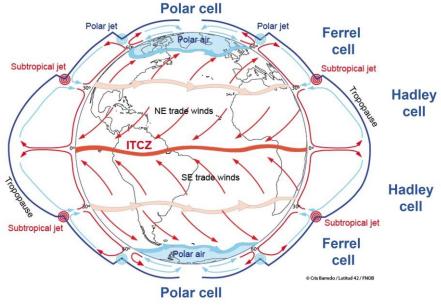
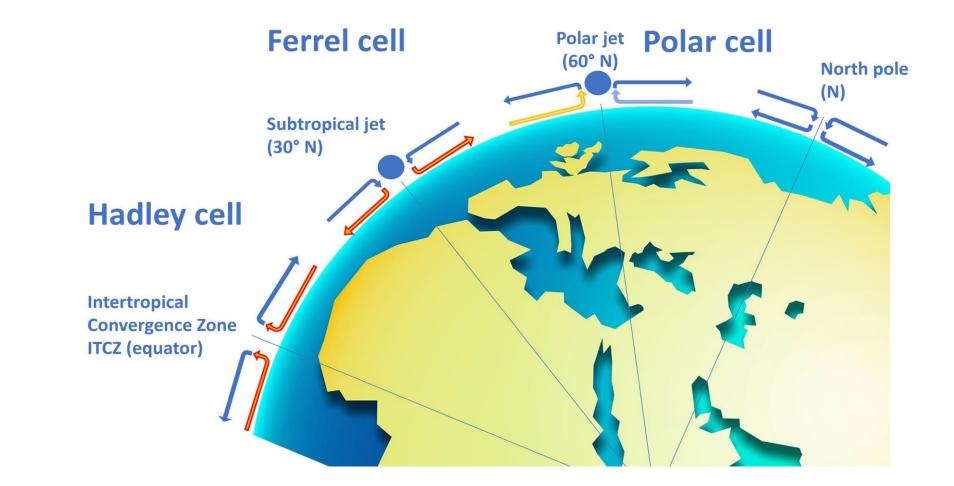
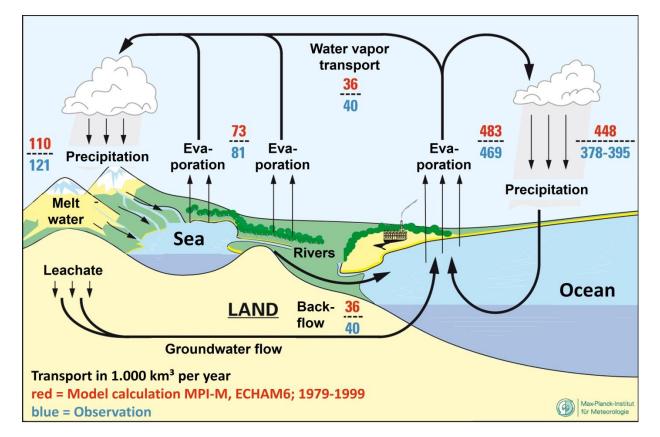
Multiplied by the heat of evaporation, the stored or latent heat is **32,000 EJ**.

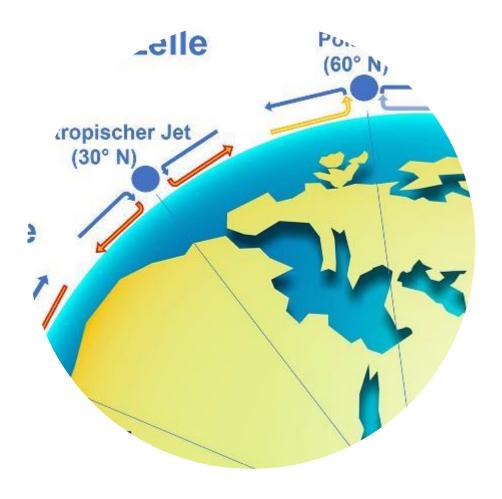

The atmospheric water is circulated around 38-39 times.

This results in a heat transport of 1,250,000 EJ.

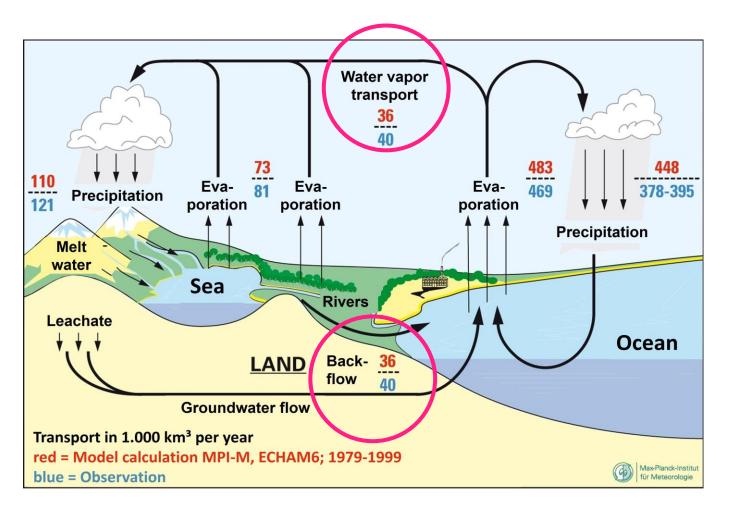
Image source: By Regionalplaner - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=27966176

Sun and rain

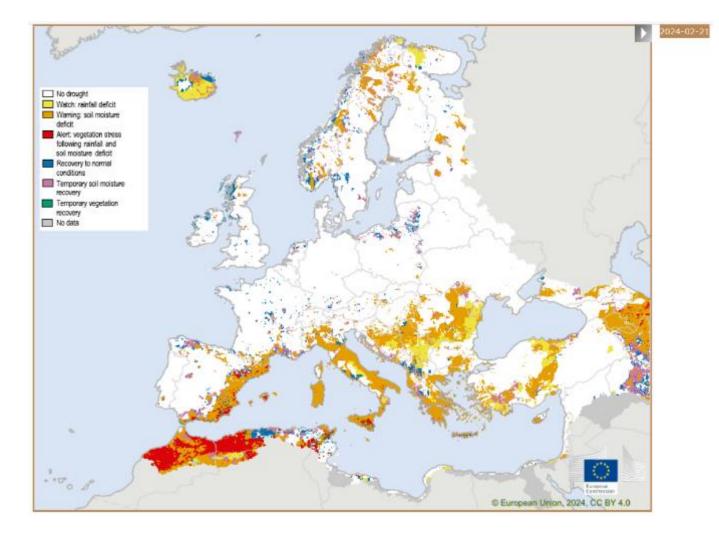





Image source: https://www.insightsonindia.com

Weather cells


Water cycle

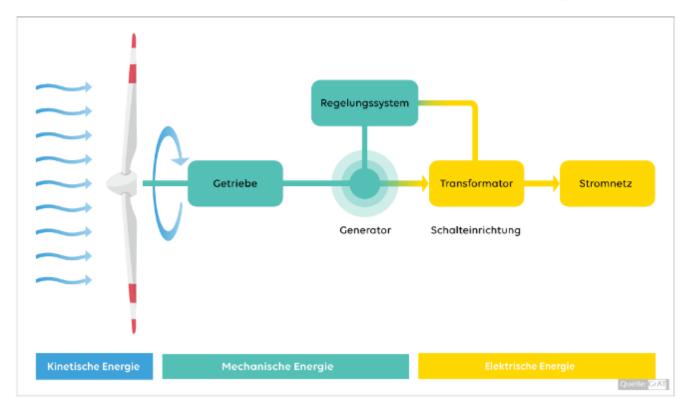
https://www.zamg.ac.at


Water cycle

Only about **7.5 to 8.5 %** of all evaporating water reaches the land from the oceans!

It rains off, evaporates again and is transported further by the **wind**.

European drought monitor



https://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1153

Source ewe.com

Wie wird der Strom in einem Windrad erzeugt?

Wind energy

- *m:* flowing air mass
- *v:* Wind speed
- *E*_{*kin*}: Kinetic energy

 $E_{kin}=\frac{1}{2}m\,v^2$

Since the volume and thus the air mass cannot change when passing the wind turbine, the **generation of electrical energy** results from the **decrease in kinetic energy**, i.e. from a decrease in the speed of the flowing air mass.

Wind turbines are therefore wind brakes.

Wind energy output

- *r:* Rotor diameter
- *v:* Wind speed
- *ρ:* Air density
- P: Power

The rotor diameter and the speed are essential parameters for the rated power of the wind turbine:

Double the diameter - 4 times the power Twice the speed - 8 times the power Three times the speed - 27 times the power

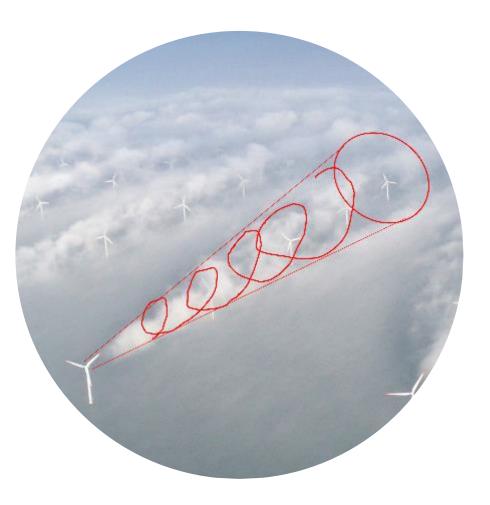
$$P = (\pi * r^2 * \rho * v^3)/2$$

Water transportation

Vestas V172-7.2 MW

Rotor diameter **172** m.

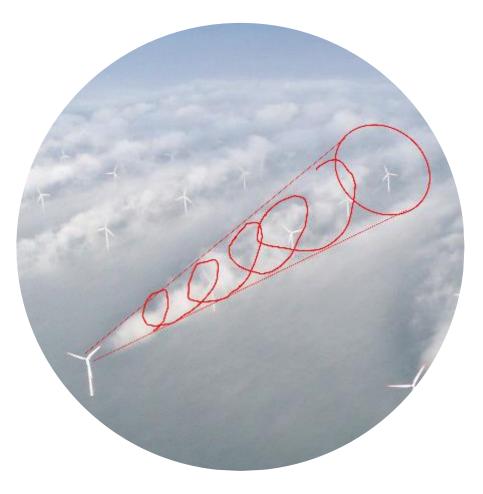
Rotor area approx. 23,200 m².


Assumption wind speed:

is reduced from 14 m/s to 7 m/s

23,200 m² * 7 m/s = 162,400 m³/s of air mass

With a water content of approx. 15 g/m³ air:


162,400 m³/s * 15 g/m³ = 2,436,000 g/s = 2,436 kg/s or **2.436 m³/s = 146 m³/min or 8,770 m³/h**

Water transportation

MySE 16-260

Rotor diameter **260** m. 50,000 m². Rotor area approx. Assumption wind speed: is reduced from 14 m/s to 7 m/s 50,000 m² * 7 m/s = 350,000 m³/s of air mass With a water content of only 10 g/m³ air: $350,000 \text{ m}^3/\text{s} * 10 \text{ g/m}^3 = 3,500,000 \text{ g/s} = 3,500 \text{ kg/s}$ or 3,500 l/s = 210 m³/min or 12,600 m³/h And that's just one wind turbine! And: Repowering will exacerbate the situation.

Wind energy

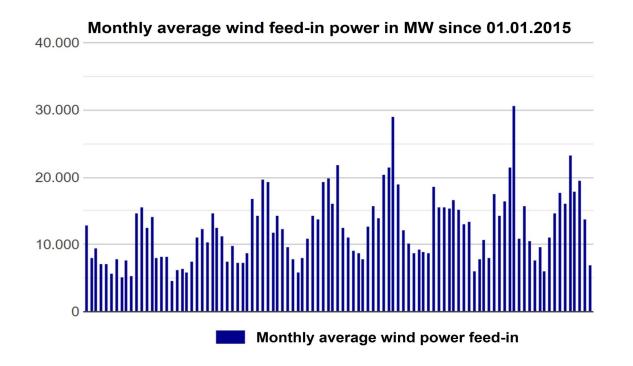
Onshore installed capacity: approx. **61 GW** Number of onshore turbines (Germany) 28,667 Onshore generation: 118.7 TWh

Average output per h: 118,700 GWh / 8,760 h =

Offshore generation:

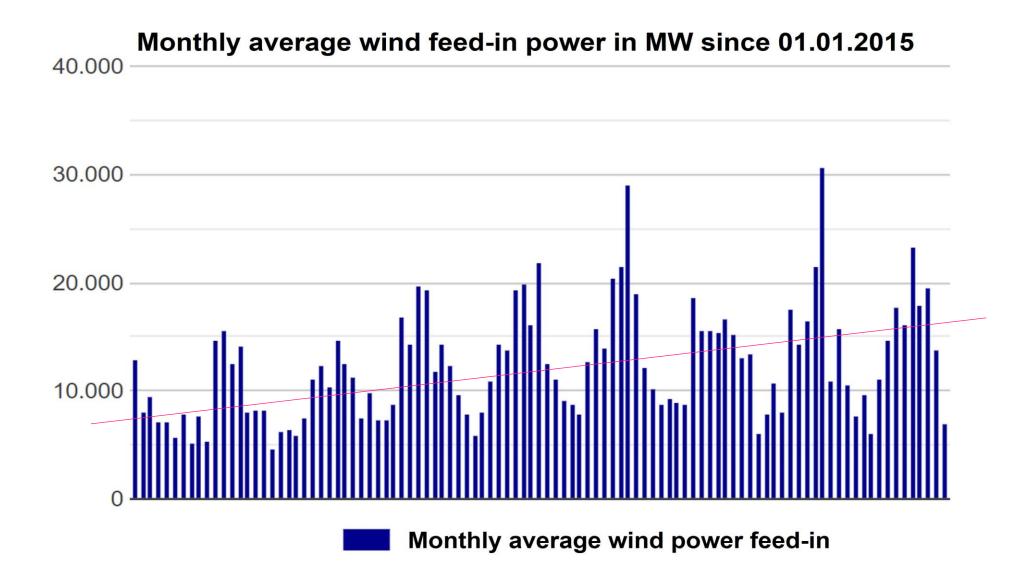
22 % of the installed capacity

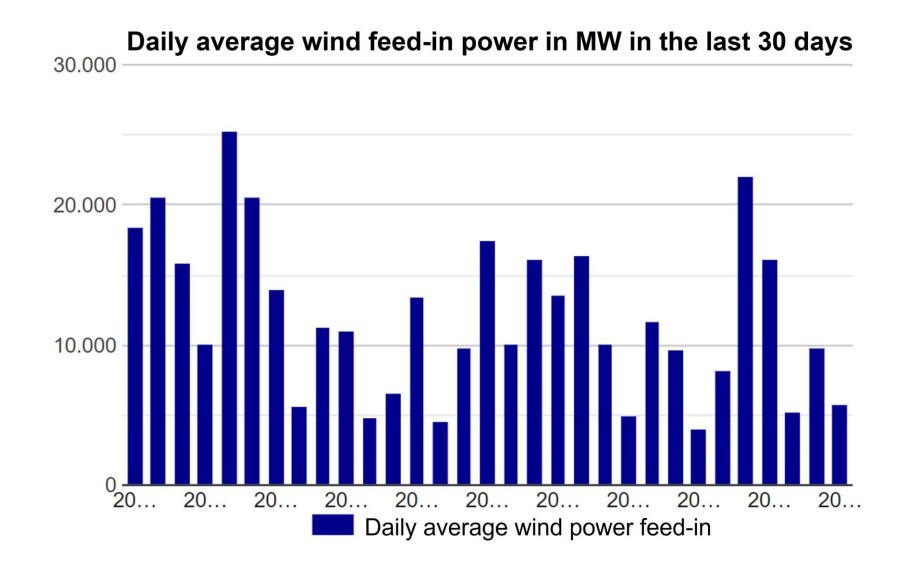
Source: Federal Network Agency and German Wind Energy Association


13.55 GW

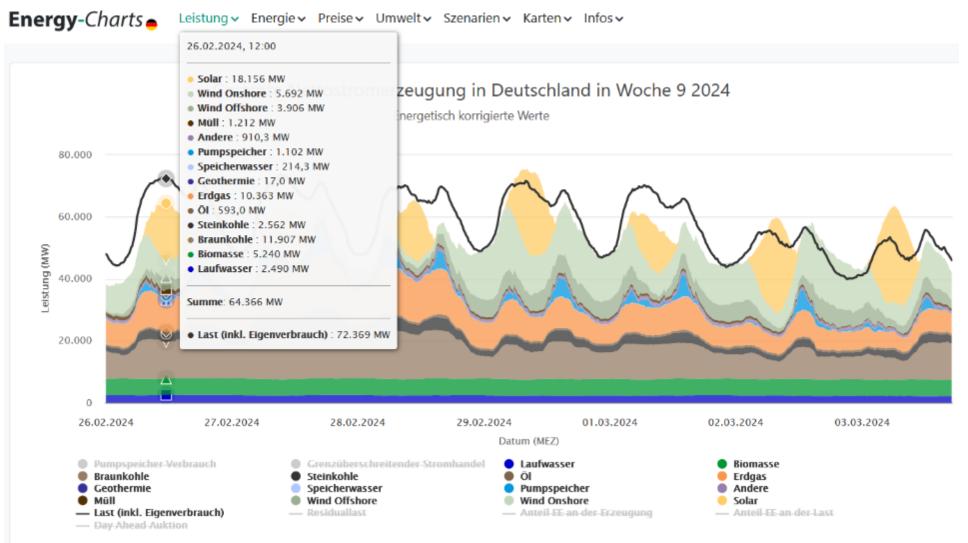
23.5 TWh

WIND ENERGY


Wind power per month since 01.01.2015



The seasonal fluctuations are clearly visible. It is also easy to see that never exceed **30 GW at peak** values.


And this despite an installed capacity of more than **60 GW**!

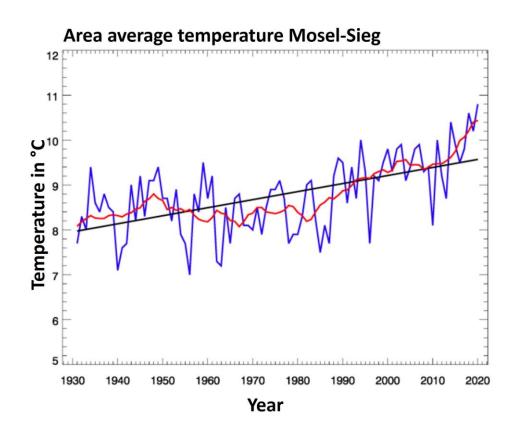
Source: Windjournal.com

WIND ENERGY

Enerov-Charts.info - letztes Update: 19.03.2024. 07:38 MEZ

Interim conclusion 1

- In view of these figures, any further expansion of wind power plants makes absolutely no sense.
- More turbines only increase the phantom power and flush money from the consumers into the wind millers' coffers!
- More turbines mean **massive destruction of nature** and destruction of economic capital.
- When setting up in a protected forest, both the access route and the power connection must be observed.
- The climatic effect only comes into play when the wind is blowing properly!
- Not to mention the infrasound.

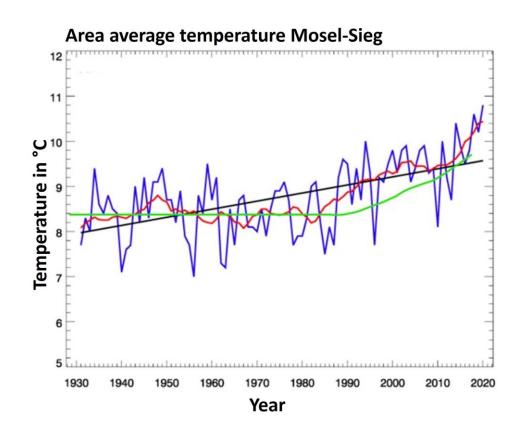

Interim conclusion 2

- Wind made the largest contribution from alternative sources in **2022 with 123 TWh and in 2023 with 139 TWh**.
- This corresponds to a share of **0.74** % or **0.83** % of global primary energy consumption of **166,500 TWh**
- Hydrogen production in Germany from wind energy is also invalid in view of these figures and the discussion about it is window dressing!
- Hydrogen production with wind energy outside of Germany is pure eco-imperialism.

The climate monitor report published at the end of 2021 gives examples of temperatures for three regions.

A **linear trend line** has been drawn in the graph, suggesting a continuous temperature increase over 90 years.

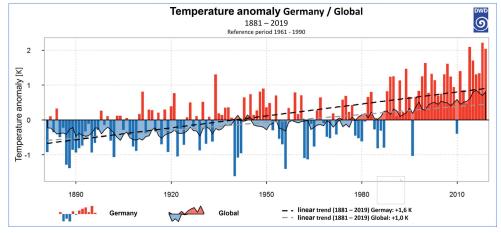
Source: KLIWA Monitor Report 2021

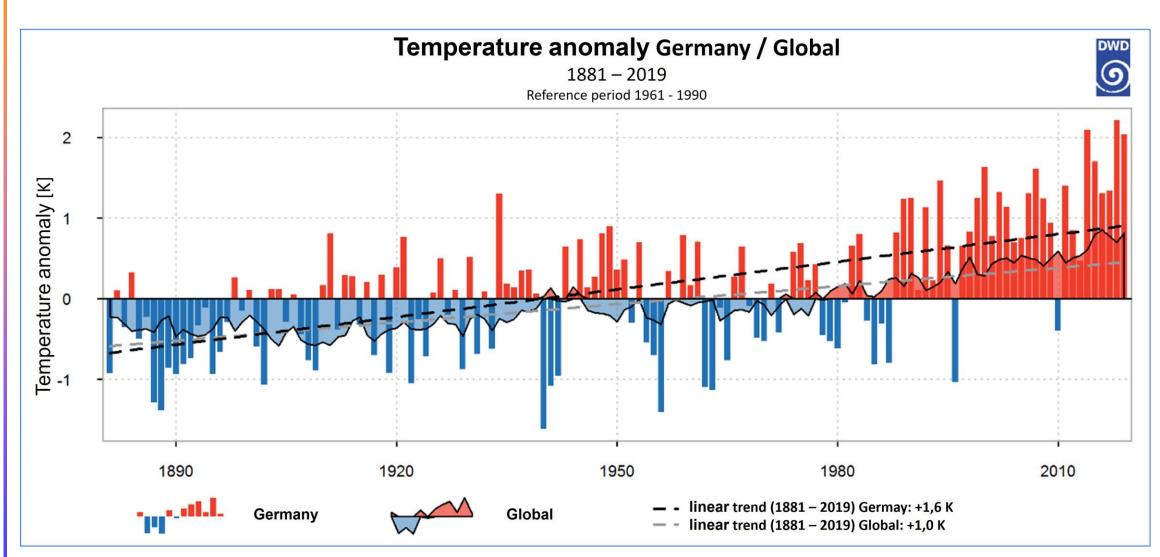


The green line shows the actual course.

According to this, the temperature has remained constant for around 60 years, with a clear increase only becoming apparent from **1990/2000** onwards.

This observation applies worldwide and obviously cannot be explained by CO₂

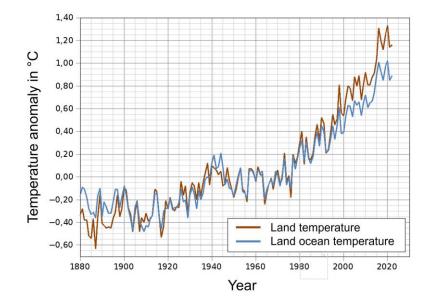

Source: KLIWA Monitor Report 2021


It is also very interesting that the temperature anomalies in Germany in particular have been considerably more pronounced in recent decades than is the case with the global trend.

But nobody asks a critical question about this either!

That would be the original task of science!

Source: German Weather Service DWD



Source: German Weather Service DWD

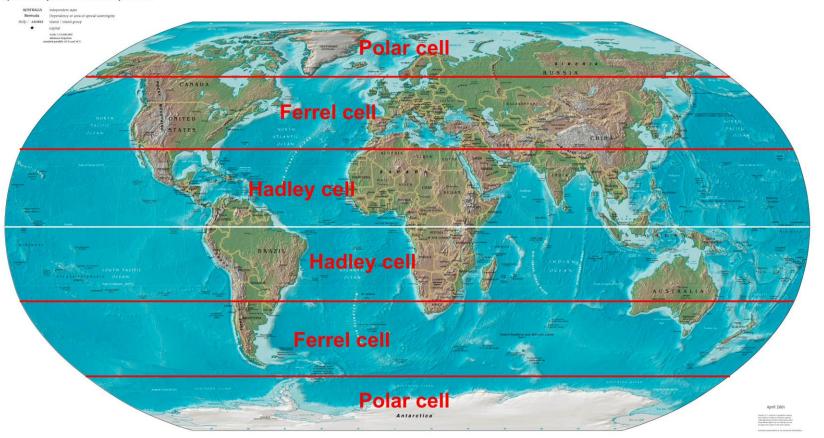
This graph can be found on the sonnentaler.net website.

It also shows that the land temperature and the land-ocean temperature have been diverging for around 20 years.

It probably can't be global radiation, because this affects the whole earth.

Source: Free University of Berlin

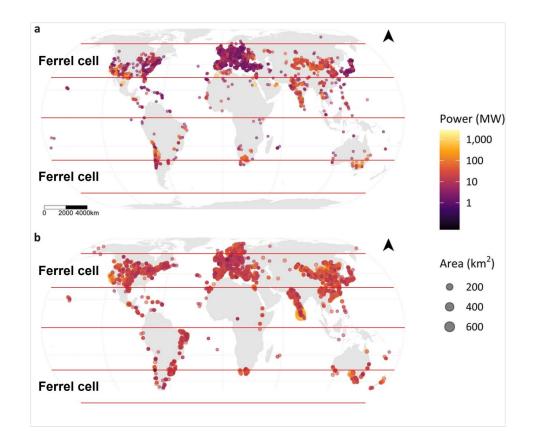
European Environment Agency


Of all the continents in the world, Europe is warming up the fastest!

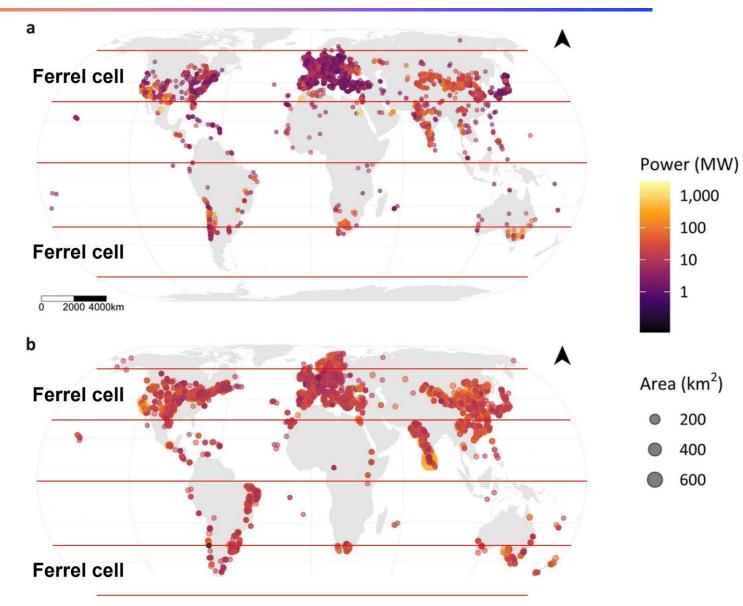
Why doesn't anyone ask the question? Why Europe in particular?

It obviously can't be due to the CO_2 . Or is it because it is the smallest continent? Or is it because we are tapping too much energy from the climate system?

Weather cells


Physical Map of the World, April 2001

Photovoltaics and wind energy


Photovoltaic farms

Wind farms

Source: nature.com/scientificdata

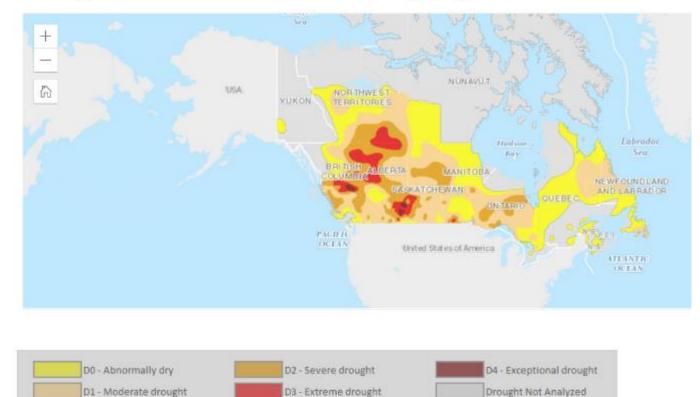
WIND ENERGY AND CLIMATE

Source: nature.com/scientificdata

Shift of the 40°C mark to the north

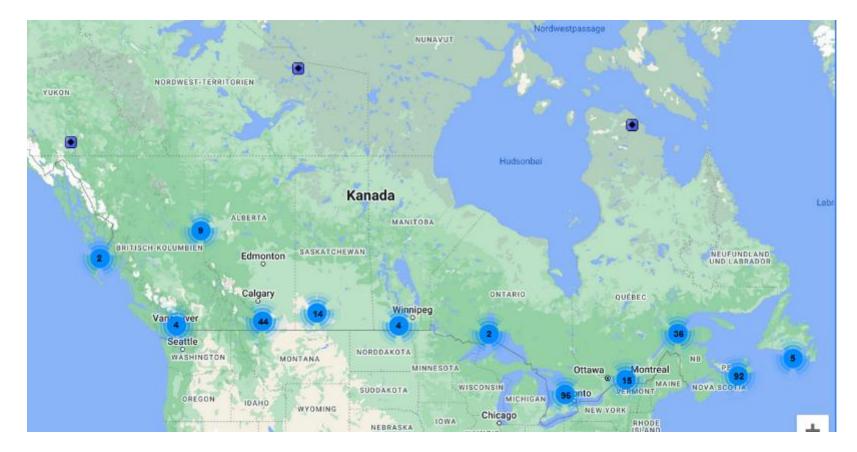
WIND ENERGY AND CLIMATE

SUMMARY


+

0

Extreme weather Canada


Drought conditions as of February 29, 2024

https://agriculture.canada.ca

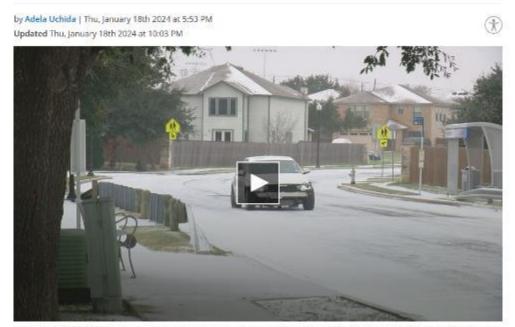
SUMMARY

Windpower Canada


https://www.thewindpower.net/country_maps_en_14_canada.php

Extreme weather Australia

https://climateextremes.org.au/stateof2022/


Windpower Australia

https://reneweconomy.com.au/large-scale-wind-farm-map-of-australia/

Extreme weather Texas

Expert says Texas' recent cold isn't climate changelinked, but 2023's heatwave was

While this week's extreme cold temperatures in Texas were likely not caused by climate change according to one expert, the record-breaking summer heat in 2023 that strained the power grid was attributable to climate change, which is expected to make such extreme heat more common. (CBS: Austin)

https://cbsaustin.com/news/local/expert-says-texas-recent-cold-isnt-climate-change-linked-but-2023s-heatwave-was

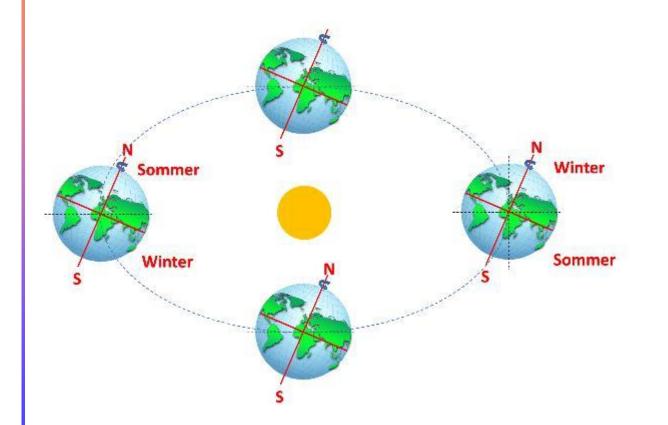
Wind and PV in Texas

Mit Wind und Solar an die Spitze

Der Ölstaat Texas zeigt dem Rest der USA, wie Energiewende geht

Dienstag, 27.02.2024, 13:49 -- von FOCUS-online-Redakteur Florian Reiter 💟




https://www.focus.de/earth/analyse/mit-solar-an-die-spitze-der-oelstaat-texas-zeigt-dem-rest-der-usa-wie-energiewende-geht_id_259708882.html

SUMMARY

Spaceship Earth

Earth's rotation:

1x per day around the axis results in a rotational speed at the equator of **1,662 km/h**

0

Earth around the sun:

1x per year results in a Speed of **107,600 km/h**

Our **solar system** rotates around the center of the Milky Way galaxy at a speed of **960,000 km/h**

THANK YOU VERY MUCH

Manfred Brugger windmania@manfred-brugger.de buch.manfred-brugger.com